
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP015441
TITLE: Information Consistency Checking in Documentation Driven
Development for Complex Embedded Systems

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Workshop on Software Engineering for Embedded Systems [SEES
2003]: From Requirements to Implementation

To order the complete compilation report, use: ADA424148

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP015439 thru ADP015454

UNCLASSIFIED



INFORMATION CONSISTENCY CHECKING IN DOCUMENTATION DRIVEN
DEVELOPMENT FOR COMPLEX EMBEDDED SYSTEMS

Valdis Berzins Ying Qiao Luqi
Department of Computer Science Department of Computer Science Department of Computer Science

Naval Postgraduate School Naval Postgraduate School Naval Postgraduate School
Monterey, CA 93940, USA Monterey, CA 93940, USA Monterey, CA 93940, USA

berzins@nps.navy.mil yqiao@nps.navy.mil luqi@nps.navy.mil

Abstract - Complex embedded systems, especially systems of Previous research on embedded system development
embedded systems (SoES) need documentation to support their revealed that documentation plays a crucial role in coping with
development. In our research, we are developing a documentation the above challenges throughout the software life cycle.
driven development method for SoES. In this method, keeping According to the FIPS PUB 105 definition, documentation
high confidence properties consistently identified in refers to all information that describes the development,
documentation of different development phases is an important reersto all mainthat descrieste developenT,
issue since it is critical to ensure software quality of the end operation, use, and maintenance of computer software. This
product. To address this issue, in this paper we investigate a information is in a form that can be reproduced, distributed,
method for information consistency checking in documentation updated, and referred to when it is needed [2]. Furthermore,
driven development for SoES. We present an attributed object software documentation should provide information to support
graph model to describe the semantics of document elements. all software life cycle processes, most notably, requirements
Based on this model, we show how a set of attribute computation gathering, quality assurance, design, system evolution and
rules can analyze consistency between the key information such reengineering,. project management, communication among all
as timing properties transformed from one development phase to system stakeholders and communication with software tools.
another.

B. Related Work

1. INTRODUCTION Software Engineering aims to improve software quality and
productivity by providing systematic, disciplined and

A. Background quantifiable approaches to software development.
Documentation has been proven to play a key role in software

Complex embedded systems that are widely used today are engineering. Many theories, methods, and techniques related
usually deployed for long periods of time. They usually have to documentation have been developed in the past decades.
mission critical requirements and demand real-time and high- There are different specific documents associated with
confidence performance. These complex embedded systems, different development phases. Typical phases in the software
known as systems of embedded systems (SoES)[1], are life cycle include requirements analysis and definition,
composed of component systems that were developed by architectural design, implementation, composition,
different organizations with different tools and run on different deployment, maintenance and evolution.
platforms. Furthermore, they must rapidly accommodate
frequent changes in requirements, mission, environment, and In the requirement phase, a requirement definition, which is
technology. These traits make software development for a kind of documentation, serves as a starting point for the
systems of embedded systems face several challenges. First, whole software development process. Natural language is the
key properties of embedded systems, such as high-confidence most common form of requirement definition [3]. By modeling
properties are hard to keep consistent during the whole and formalizing the requirement definition, the formal
development process, making software quality difficult to documentation - the requirement specification - can be
ensure in the end product. Second, a wide variety of derived. In this case, the requirement specification is usually
stakeholders (sponsors, developers, users, maintainers, etc) are written in formal language. Typical examples include
involved in the overall lifecycle of the software. Inconsistent [4], [5], [6] and [7]. They use temporal logic to represent the
information among different stakeholders is one of the main formal requirement specifications that further serve as the
factors resulting in design faults. Third, complex embedded basis for verification and validation.
systems are difficult to evolve and maintain because of the
independent development of their constituents and frequent The most important documentation used in the design phase
changes in circumstances. is design specification. This acts as a blueprint for the actual

coding by outlining the logic of individual code modules. It
also assists maintenance programmers as they modify the

26



program to add enhancements or fix errors [8]. A design successive development phases. Traditional documentation
specification is generally described by formal or semi-formal technologies do not solve this problem.
methods, such as hierarchy charts, logic charts, state transition
diagrams, state machines, data flow diagrams, data To attack above problems and enable documentation to
dictionaries, object-oriented approaches, and a great number of provide more effective support for complex SoES
formal languages [9]. Some typical formal and semi-formal development, we proposed a documentation driven
notations used for design specification include UML [10, 11] development method for SoES [22]. This is a new approach

and some kinds of architecture description language [12, 131. for documentation that can enhance integration of computer

Prototype system description language (PSDL) [14, 15] is aided software development methods, encompass the entire

another typical design specification language for real-time life cycle, support system evolution and improve

embedded systems. It uses operators and data streams between communication with system stakeholders. In this method,
operators to model the embedded systems and captures timing keeping consistency of information transformed between

constraints and control constraints of embedded systems. successive development phases is an important issue. It is

PSDL also provides a graphic interface to stakeholders. In critical for ensuring high confidence in the end product. For

addition, design specification also serves as the basis for this purpose, a specific method is needed to enable the key

formal analysis as described in [16], [17] and [18] to find information to be consistently transferred between

design faults early in development. documentation of successive development phases. This paper
presents such a specific method.

Configuration is another important aspect of software
development that is done based on documentation support, Much research has been done on attribute grammars that

such as architectural specification and component constitute a classic technology for compiling [23-26]. An

specification. In complex control systems, the configuration of attribute grammar is a specification of computations and

components must be flexible enough to allow rapid online dependence based on a formal calculus introduced by Knuth

reconfiguration and adaptation to react to environmental [27]. Since it is an efficient way to handle the semantics of

changes and unpredictable events at run-time. For this context-free languages, we plan to extend and exploit it to deal

purpose, an open software architecture [ 19] has been used for with the information consistency issue identified above. In this

integrating control technologies and resources, paper, we present an attributed object graph model to represent
aspects of the "meaning" of document elements and use a set

Although a lot of effort has been applied toward improving of attribute computation rules to analyze and ensure the

documentation technology [8, 20, 21], there are still open consistency of information transformed between successive

challenges that hinder documentation from providing efficient development phases.
support for complex systems of embedded systems
development. First, according to the traditional concept, C. Organization of This Paper

software documentation consists only of informal text and
diagrams intended for human consumption. This kind of static The rest of paper is organized as follows: Section 2

information simply records some results and process steps addresses the core of the documentation driven development

during 'the software development. It cannot capture the method - repository representation; Section 3 presents an
dynamic information during the development process. Second, attributed object graph model for document elements; Section
keeping documentation up-to-date is difficult and time 4 illustrates the use of attribute computation rules to help

consuming. The various representations of documentation ensure consistency of documentation and section 5 presents

increase the complexity of maintaining information the conclusion and future work.
consistency, increase the intellectual burden on stakeholders,
and introduce the need for transformations that are tedious and
error prone when carried out manually. Some formal II. REPOSOTERY REPRESENTATION
representations with rigorous logic are conducive to machine
manipulation but are difficult for human understanding. The. repository representation is the core of the

Informal representations such as natural language are documentation driven development method. All the

comfortable for many system stakeholders but are too vague information related to development process is stored as

and ambiguous for direct use by computer tools. Although knowledge in the documentation repository. Each
multiple views of the information can alleviate this problem, development phase has its own area in the documentation
how to maintain consistency among information presented to repository. The information is transformed between different
both the humans and computer tools is still a challenge. In documentation areas that belong to successive development
addition, to guarantee software quality in the end product, the phases. Typical examples of the information stored in the
information should be kept consistent among documents of repository are requirement specifications, abstracted models,

stakeholder input (from sponsors, end users, developers,
technical supporters, etc.), design rationale, project

27



management information and the source code. The repository properties of the context and the descendent nodes of the
uses a structured central representation for this knowledge so documentation element. Syntactic templates are designed
that different stakeholders can communicate with each other together with specific sets of -rules that govern the
based on consistent information and this knowledge can be manipulation of the data stored in the document elements. The
consistently transformed between successive development content of the document elements is treated as repository
phases. Fig. I illustrates the repository representation. knowledge and the different templates govern how that

knowledge is used and presented to the stakeholders and tools
Fig. I shows that the repository representation includes in the computer development environment. The combination

three kinds of artifacts, i.e., document elements (DEL), a set of of a document element and different syntactic templates forms
syntactic templates and a set of attribute computation rules. A the multiple view presentation of the same information.
document element is a basic building block consistent with the Combining document elements with corresponding templates
semantics of the information contained in the documentation. can also transform the information between representations
It is described by a semantic document model. This model is written in different description languages [22].
an object model for the information contained in the
documentation whose instances form an attributed object Attribute computation rules represent the methods for
graph. The documentation elements are the nodes of this computing derived document attributes. They make the
graph. The amount of information associated with each node repository into an active project support system. These rules
depends on the degree of formalization for each are organized in a rule base. The rule base is designed to be
documentation type. Formal representations have explicit open in the sense that new rules can be added without
structure at a fine granularity and very simple information changing the effect of any complete subset of the previous
associated with individual documentation elements. Informal version of the rules. This property supports reliable
representations have only a large granularity structure and can incremental extension of the automation support provided by
have lengthy annotations attached to the nodes. Document the repository and enables steady improvement of decision
elements hold the key information extracted from all the support processes.
requirements, models, activities and processes related with
system development. The model is strongly typed and In the long term, the repository will perform a variety of
structured according to a documentation schema. Further automated and computer aided functions such as the
development of this approach will need better computer- following:
assisted methods for resolving the ambiguities common in a Materialize external representations of documents
informal representations, transforming them into more formal, suitable for particular stakeholders or tools
finer-grained representations, and for checking the validity of 0 Find appropriate subsets and projections of the
this process. documents suitable for particular purposes

0 Extract computed attributes of documents, such as
expected completion date of the project

DEL DEL SemanticS 0 Transform data among different representations as
DEL Docmen.DEL J"Document needed to support integration of development

DEL D Mdel Multiple processes and tools
S_ _ _ -views * Configuration management of the documents [28-30)

S Syntactic Templates * Project management based on management"f Semantic documents such as plans and schedules [31-33]
Processing

• :,To address the problem of consistent information

transformation between documentation of successive
development phases, we describe the attributed object graph
model and attribute computation rules in the following

f ,sections.SComputation[

III. ATTRIBUTED OBJECT GRAPH MODEL

Fig. I Repository Representation This section explains the computational semantics of the

Syntactic templates are object operations with parameters. attributed object graph model. This is an object model of
The purpose of a syntactic template is to materialize the part of knowledge in the documentation repository. It has a nested

a specific documentation view that corresponds to a given structure with potentially shared nodes, i.e., directed acyclic

documentation element. The parameters represent the relevant graph structure. This representation is a generalization of

28



abstract syntax trees and is designed to represent and
efficiently analyze constructs that appear in more than one le(x,y) = (x = bottom) or (x = y) or (y = conflict error)
context. This is a common pattern in software artifacts - for
example, an operation is typically defined once and called lub(x, y) = if (x = bottom) or (x = y) then y
from many different contexts. else if(y = bottom) then x

In the attributed object graph model, each node represents a else conflict error--display an error diagnosis
semantically meaningful structure, such as an individual
requirement, a subsystem, an operation, or an operator within a This default can be explicitly overridden by the designer for
logical expression. The nodes are the finest grain structures data types where this makes sense. An example from the
visible to the attribute computation rules. Each node is an domain of timing constraints illustrates the idea:
instance of an abstract data type. The computed attributes of
each node correspond to the operations of the data type. TYPE DEADLINE EXTENDS INTEGER
Invoking appropriate methods of the data type can derive the
value of an attribute. Attribute computation rules are bottom =MAMUM_INTEGER
declarative definitions of these methods.

le(x, y)= x > y
The semantics of attribute evaluation in the attributed object lub(x,y) =MN(x,y)

graph model is a generalization of the corresponding semantics
in an ordinary attribute grammar. The two are the same when This corresponds to the idea that if a program meets a given
the graph is a tree. The difference shows up for inherited deadline, then it also meets any later deadline. Thus, a
attributes of shared nodes: in an attribute grammar, each node dalnte tas et n ae edie hs
canhaveattribe s t of eparent, a shared nodes: in an attributegc de component that inherits deadlines of I OOms, 75ms, and 120ms
can have at most one parent, but a shared node in an attributed from three different requirement documents is subject to a
object graph can have more than one parent. design constraint to execute within 75ms (since

We require the type of an inherited attribute to be a lattice. lub(lub(l00,75),120) = 75 for the deadline type defined

In implementation terms, the type must implement the lattice above).

[T] interface with operations and these operations must satisfy To ensure the high confidence of SoES, it is important to
the standard properties of a mathematical lattice. To e nsu r ope rti es con sid ent is the to

keep timing properties consistent during the whole

bottom: T -- least element development processes. This means the information related to
timing properties needs to be consistently identified in

lub(T, T) :T -- least upper bound documents belonging to different development phases. In the
le(T, T): bool -- approximation ordering next section, we will use timing properties -as an example to

illustrate the application of the proposed attributed object

The semantics of an inherited attribute A with a defining graph model to the problem of maintaining document
expression E is the least upper bound of the values of E in all consistency.

contexts (i.e. the set of all parent nodes). In implementation
terms, an attribute computation rule of the form
child.A = E(parent.A) can be realized with an initialization IV. ATTRIBUTED COMPUTATIONS FORDOCUMENT MANAGEMENT
node.A := bottom (for all nodes) and an incremental update
step child.A := lub(child.A, E(parent.A)) which is enabled The attributed object graph model was designed to realize

in the context of each parent node whenever the value of documentation checks and transformations that support high
parent.A changes in that context, confidence SoES development. These computations are used

to (a) calculate the attributes from the information in the

To make the above restriction on attribute types less documentation repository, (b) transform the information from
burdensome, we propose a default extension of all types (a one development phase to another, (c) analyze the consistency
uniform subtype definition) that adds a new constant "bottom" between the information transformed between development
representing an undefined value, another new constant phases, description languages and information views, and (d)
"conflicterror" representing a conflict between two extract subsets of documents needed for particular purposes.
incompatible values inherited from different contexts, and the The declarations of these computations form a set of attribute

usual flat ordering on simple data types: computation rules.

In the development process, the documentation generated in
early development phases is taken as input for the next phases

29



and guides the development activities in that phase to generate component C and the machine running the consumer process
the output documentation. To ensure the quality of the end waiting for the output of C.
product, it is important to keep selected non-functional A mature documentation repository will actively check
properties needed for high confidence visible and consistent many different generic design rules like the one illustrated in
during the whole development process. These high-confidence this simple example. The rule base will gradually grow as
properties should be kept consistent between the processes are improved and constraints related to, high
documentation generated in the early phase and that generated confidence attributes are gradually formalized.
in the next phase. Although the format of this kind of "key
information" may be different between two development
phases, this information of later phase should imply that of the V. CONCLUSIONS AND FUTURE WORK
earlier. For example, in the requirement phase, requirement
documentation may include information describing a customer In recent years, complex embedded systems, known as
request for deriving the computation result within containing systems of embedded systems (SoES), have been widely used
constraints, then in the design phase, the design documentation in many fields such as flight control and avionics, industrial
should include information with the same implication, such as process control, weapon system control and nuclear plant
information related to the deadline, period and maximum control. The high complexity of SoES forces them to confront
execution time. many software development challenges, such as difficulty

ensuring software quality, difficulty supporting software
In this paper, we use timing properties transformation evolution and difficulty supporting communication among

between requirement phase and design phase as the example to different stakeholders. Much research on individual embedded
illustrate the application of attribute computation rules. system development has demonstrated that documentation
Suppose that the requirements specification includes a plays an important role in development process and provides a
maximum response time (MRT) constraint for a given service promising way to cope with these challenges. In our research,
S and that at the architectural level, S is realized by a we are developing a documentation driven development
software component C. The maximum response time appears method for SoES. This is a new approach to documentation
at the requirements level because it is directly visible to the that can enhance integration of computer aided software
system stakeholders and is of vital concern to them, since late development methods, encompass the entire life cycle, support
control signals can have catastrophic consequences. system evolution and improve communication with system

stakeholders. This effort enables documentation to provide
At the design level, this constraint is transformed into lower more effective support for complex SoES development.

level constraints on the period and maximum execution time
(MET) of a periodic software process. If the documentation Furthermore, keeping information transformation consistent
element S in the requirements document is a parent node of between successive development phases is an important issue
the documentation element C in the design document, the in the proposed approach. It is critical for ensuring high
design rule that ensures consistency of the two documents with confidence in the end product. In this paper, we investigate a
respect to this issue can be expressed by the following simple specific method to perform information consistency checking
attribute computation rules: (MRT is an attribute of S; in documentation driven development of SoES. We present an
timing-check, period, MET and diagnostic are four attributes attributed object graph model to describe the semantics of
of C.) document elements. Based on this model, we show how

attribute computation rules can be used to analyze consistency

C.timing-check = (C.period + C.MET< S.MRT) between the key information such as timing properties
transformed from one development phase to another.

C.diagnostic = Unless (C.timing-check, error-message)

-- Unless (C, M) displays M if C =false However, further work still needs to be done in order to
and does nothing otherwise improve capability of documentation to efficiently support

complex embedded system development. For example, a better
The rationale for this rule is that the worst case occurs when language for defining attribute computations and an optimized

a request arrives just after the request stream has been polled. evaluation engine that can handle the generalized attribute
In this case, the transaction will start processing one period semantics proposed here should be designed.
later, and the software can take up to the maximum execution
time after the transaction starts to produce the result. This
simplified example assumes that all processing is done locally, VI. REFERENCE
so that we do not have to account for any latency in the
communications link between the machine running the [1] M. Maier, "Architecting Principlles for Systems-of-System",

Technical Report,
http://www.infoedcom/Open/PAPERS/systems.him.

30



[2] http://www.nist.gov/itl/div897/pubs/fips I 05.pdf Analysis Systems (TA CAS03), Warsaw, Poland, April 7-11,

[3] L. Goldin, D. Berry, "AbstFinder: A Prototype Abstraction 2003, pp.4 0 9-42 5 .

Finder for Natural Language Text for Use in Requirement [19] L. Wills, S. Sander, S. Kannan, A. Kahn, J. Prasad, and D.

Elicitation", Automated Software Engineering, No.4, 1997, Schrage, "An Open Control Platform for Reconfigurable,

pp.375-412. Distributed, Hierarchical Control Systems", in 2000 Digital

[4] E. Clarke, E. Emerson and A. Sistla, "Automatic Verification Avionics Systems Conference, Philadelphia, PA,

of finite state concurrent systems using temporal logic October,2000,http://controls.ae.gatech.edu/papers/kannandasc
specification",http://citeseer.nj.nec.com/clarke93verification.ht _00.pdf.

ml. [20] P. Devanbu, P. Selfridge, R. Branchman and B. Ballard,
[5] M. Dwyer, J. Hatcliff, and G. Avrunin, "Software Model "LaSSIE: a Knowledge-based Software Information System",

Checking for Embedded Systems", in IEEE 12th International Conference on software

www.cis.ksu.edu/-dwyer/projects/HCES-May-0l-l.ppt. Engineering, 1990, pp.2 49 -26 1.

[6] D. Garlan, "Model Checking Publish-Subscribe Software [21] C. Paris, K. Linden, "Building Knowledge Bases for the

Architectures", Presentation at ARO Kickoff Meeting, Generation of Software Documentation",
University of Pennsylvania, Philadelphia, PA, May 24 - 25, http://acl.ldc.upenn.edu/C/C96/C96-2124.pdf

2001, www.cs.cmu.edu/-svc/talks/ppt/garlan.ppt [22] Luqi, L. Zhang, " Documentation Driven Agile Development

[7] J. Wing, "Scenario Graph Generation and MDP-Based for Systems of Embedded Systems", Submitted to Monterey

Analysis", Presentation at ARO Kickoff Meeting, University of Workshop 2003.

Pennsylvania, Philadelphia, PA, May 24 - 25, 2001, [23] G. Hedin, "Reference Attributed Grammars", in Second

http://www- workshop on Attribute Grammars and their Applications
2.cs.cmu.edu/-svc/talks/html/wing-files/frame.htm. (WA GA99), March 1999, pp. 158-172,

[8] J. French, J. Knight and A. Powell, "Applying Hypertext http://wwwrocq.inria.fr/oscar/www/ffic2/WAGA99/proceeding
Structures to Software Documentation", s/hedin/hedin2.pdf

www.cs.virginia.edu/-cyberia/papers/IPM97.pdf [24] D. Parigot, G. Roussel, E. Duris and M. Jourdan, "Attribute

[9] http://www.comlab.ox.ac.uk/archive/formal-methods/ Grammars: a Declarative Functional Language",

[10] G. Booch, J. Rumbaugh and I. Jacobson, "The Unified http://www.inria.fr/rrrt/rr-2662.html, 1995.

Modeling Language User Guide", Addison Wesley Longman [25] R. Hemdon, V. Berzins, " The Realizable Benefits of a

Publishing Co., Inc., Redwood City, CA, 1999. Language Prototyping Language", IEEE Transaction on

[11] Object Modeling Group, Inc., "Unified Modeling Language Software Engineering, Vol. 14, No. 6, June .1988, pp. 803-809.

Specification, version 1.3", June 1999. [26] U. Kastens, "Modularity and reusability in Attribute

[12] M. Kande, V. Crettaz, A. Strohmeier and S. Sendall, "Bridging Gram'mars",http://citeseer.nj.nee.com/kastens92modularity.htm

the Gap between IEEE 1471, Architecture Description 1,1992.

Languages and UML", [27] D. Knuth, "Semantics of Context-free Language", Journal of

http://icwww.epfl.ch/publications/documents Mathematical System Theory, Vol. 2, No. 2, June, 1968,

[13] N. Mehta, N. Medvidovic, "Towards a Taxonomy of software pp.127-14 5.

Connectors", in 22th International Conference on Software [28] Ibrahim, "A Model and Decision Support Mechanism for

Engineering, Limerick Ireland, 2000, Software Requirement Engineering", Naval Postgraduate

sunset.usc.edu/classes/cs599_2000/Conn-ICSE2000.pdf. School, Ph.D. Dissertation, September 1996.

[14] Luqi, V. Berzins and R. Yeh, "A Prototyping Language for [29] M. Ham, V. Berzins and Luqi, "A Dependency Computing
Real-Time Software", IEEE Transaction on Software Model for Software Evolution", in 11th International

Engineering, Vol.14, No.10, 1988, pp. 140 9- 142 3 . Conference on Software Engineering and Knowledge

[15] Luqi, R. Steigerwald, G. Hughes and V. Berzins, "CAPS as a Engineering, June 17-19, 1999, Kaiserslautern, Germany.

Requirement Engineering Tool". in Tri-Ada'91 International [30] M. Ham, V. Berzins and Luqi, "Software Evolution Process via

Conference, San Jose, USA, Oct 22-25, 1991, pp. 75-83. a Relational Hypergraph Model", in IEEE/IEEJ/JSAI

[16] R. Alur, T. Dang, J. Esposito, Y. Hur, F. Ivancic, V. Kumar, 1. International Conference on Intelligent Transportation

Lee, et al., "Hierarchical Modeling and Analysis of Embedded Systems, Tokyo, Japan, October 5-8, 1999.

Systems", in IEEE, Vol. 91, No 1, January, 2003, pp. 11-28. [31] S. Badr, V. Berzins, "A Software Evolution Control Model",

[17] R. Alur, "Model-based Design of Embedded Software", in Monterey Workshop 94, Monterey, CA, September 7-9,

Presentation at Vanderbilt Workshop, Vanderbilt University, 1994, pp. 160-171.

Nashville, TN, December 13-14, 2001, [32] S. Badr, " A Model and Algorithms for A Software Evolution
www.hpcc.gov/iwg/sdp/vanderbilt/agenda-presentations/alur.p Control System", Naval Postgraduate School, Ph.D.

df. Dissertation, December 1993.

[18] 0. Sokolsky, A. Philippou, I. Lee and K. Christou, "Modeling [33] M. Ham, "Computer Aided Software Evolution based on

and Analysis of Power-Aware Systems", in 9th International Inferred Dependencies", Naval Postgraduate School, Ph.D.

Conference on Tools andAlgorithms for Construction and Dissertation, December 1999.

31


